Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35627397

RESUMO

The SARS-CoV-2 can spread directly via saliva, respiratory aerosols and droplets, and indirectly by contact through contaminated objects and/or surfaces and by air. In the context of COVID-19 fomites can be an important vehicle of virus transmission and contribute to infection risk in public environments. The aim of the study was to analyze through surface sampling (sponge method) the presence of SARS-CoV-2 in public and working environments, in order to evaluate the risk for virus transmission. Seventy-seven environmental samples were taken using sterile sponges in 17 animal farms, 4 public transport buses, 1 supermarket and 1 hotel receptive structure. Furthermore, 246 and 93 swab samples were taken in the farms from animals and from workers, respectively. SARS-CoV-2 detection was conducted by real-time RT-PCR and by digital droplet RT-PCR (dd RT-PCR) using RdRp, gene E and gene N as targets. None of the human and animal swab samples were positive for SARS-CoV-2, while detection was achieved in 20 of the 77 sponge samples (26%) using dd RT-PCR. Traces of the RdRp gene, gene E and gene N were found in 17/77 samples (22%, average concentration 31.2 g.c./cm2, range 5.6 to 132 g.c./cm2), 8/77 samples (10%, average concentration 15.1 g.c./cm2, range 6 to 36 g.c./cm2), and in 1/77 (1%, concentration 7.2 g.c./cm2). Higher detection rates were associated with sampling in animal farms and on public transport buses (32% and 30%) compared to the supermarket (21%) and the hotel (no detection). The result of the study suggests that the risk of contamination of surfaces with SARS-CoV-2 increases in environments in which sanitation strategies are not suitable and/or in highly frequented locations, such as public transportation. Considering the analytical methods, the dd RT-PCR was the only approach achieving detection of SARS-CoV-2 traces in environmental samples. Thus, dd RT-PCR emerges as a reliable tool for sensitive SARS-CoV-2 detection.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/diagnóstico , COVID-19/epidemiologia , RNA Viral/análise , RNA Viral/genética , RNA Polimerase Dependente de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética
2.
Future Sci OA ; 7(7): FSO711, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34254029

RESUMO

SARS-CoV-2, the causative agent of the COVID-19 pandemic, has rarely been associated with transmission from humans to animals (reverse zoonotic transmission). In this retrospective study, the authors reviewed data obtained from 236 animals, including buffaloes, goats/sheep, horses, carrier pigeons, rabbits, hens, snakes, pigs and cows that were screened for SARS-CoV-2 infection because they had been in contact with their SARS-CoV-2-positive breeder for at least 2 weeks. None of the tested animals were found to be positive. The authors' findings suggest that the risk of reverse zoonotic transmission among bred animals and SARS-CoV-2-positive breeders is very low or nonexistent. Additional studies are warranted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...